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Genomic and Cellular 
Cognition

• Distributed Coding: 
Reading frame compression 
(empirical e.g.)

• Elementary Logic: Switches 
& Base Systems (theory e.g.)

• Memory: Enzymatic 
feedback circuits (theory 
e.g.)

• Feature detection: Signal 
transduction and frequency 
filtering(theory e.g.)

• Robustness: Population 
level redundancy(theory 
e.g.)
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Coding
 & Compression

• Lillo, F. and Krakauer, D.C. A statistical analysis of the three-fold evolution of genomic compression through frame 
overlaps in prokaryotes. Biology Direct. doi:10.1186/1745-6150-2-22A. (2007) 
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The Genetic Code
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Genomes Store Information
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Evolutionary Information Storage
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FIG. 3. The iterative buildup of sequence space, starting with one position. Each additional position requires a doubling of the former diagram
and to connect corresponding points in both diagrams (which represent nearest neighbors). The final hypercube of dimension v contains as
subspaces ( )2,k hypercubes of dimension k.

space concept to evolution requires the introduction of a
value topography. Value landscapes have rugged fractal
structures, causing populations to accumulate on ridges and
peaks in the mountainous regions (12, 13), which is the deeper
reason for the metric nonuniformity commonly found in
comparative sequence analysis.

Statistical Geometry

Statistical geometry as such can be exemplified with mere
distance relationships. Two sequences define one distance;
three can always be fitted into a tripod diagram, because they
yield three explicit equations for the three unknown seg-
ments. The tripod, however, may be unrealistic, because the
precursor, the tripodal node, may not have existed. The truth
then emerges by adding a fourth sequence. Four sequences
define six distances and hence match a diagram that, in
general, has six segments, as shown in Fig. 4a. The three
types of segments can be obtained from

AB + CD = a + b + c + d + 2x = S (small)

AC + BD = a + b + c + d + 2y = M (medium)

AD + BC = a + b + c + d + 2x + 2y = L (large),

as 2x = L - M, 2y = L - S, and a + b + c + d = S + M
- L.
The diagram reduces to an ideal bundle if both x and y are

zero and to a tree-like dendrogram, with finite branching
distance y, if only x is zero. The general "net" form in Fig.
4a is due to the presence of reverse and parallel mutations,

By

with x being a measure of deviation from tree-likeness.
(Likewise, x and y together measure the deviation from ideal
bundle-likeness.) For partly randomized bundles, x and y are
nonzero and of similar magnitude, with x (by definition) being
the smaller of both parameters.
Why do we call this method statistical geometry? There are

(4) different quartets that can be formed from a set of n
sequences (e.g., 27,405 for n = 30 sequences). Hence, the
averages of x, y, and !14(a + b + c + d) for a set of n
sequences usually are statistically well-defined parameters.
If a tree is constructed by compromises that yield an optimal
fit, and x/y average values of -0.5 or higher are found, one
should be suspicious. Randomization then has proceeded so
far that a tree cannot be discriminated from a bundle. On the
other hand, one can prove mathematically (ref. 14; see also
ref. 15 and references therein) that, if in a set of more than
four sequences all x values are zero while 9 is nonzero, the
total set has an exact tree-like topology. Unfortunately,
statistical geometry based on distance only is not very
sensitive in differentiating topologies, the main shortcoming
being neglect of positional information. As explained above,
such information is available from order relationships in
sequence space.

In sequence space formally the procedure is analogous to
that in distance space: For each quartet of sequences, we
analyze the optimal network connecting the four sequences
in sequence space and try to reconstruct a geometry that is
representative for the whole family of sequences. We begin
with the case of binary (R, Y) sequences (Fig. 4b). There are
eight distinguishable classes of positions in three categories:
0, all four sequences having equal occupation; 1, one se-
quence differing from the three others (a, f3, 'y, 8); and 2, two

A

3d !

B

FIG. 4. Representative geometries of quartet combinations of sequences in distance space (a), RY sequence space (b), and AUGC sequence
space (c).

Biophysics: Eigen et al.

Functional Sequence Space
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Logic & Stochastic 
Switches

• Krishnamurthy, S., Smith, E.D, Krakauer, D.C. and Fontana, W. The stochastic behavior of a molecular switching circuit 
with  feedback. 2:13-25 Biology Direct.  (2007)
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Phosphorylation:
Modulation of Protein Function

 Variable Binding
 Domain

Conserved Catalytic
 Domain

22



23



24



24



24



0 1 2 s(1)

0 1 2 s(2)

0 1 2 s(n)

1

2

n

0
tie
rs

states

25



2p
Tier 1

Tier 2

Tier 3

Tier n

1p np

Depth(d)

Extent(e)

Gene Layer

26



2p
Tier 1

Tier 2

Tier 3

Tier n

1p np

Depth(d)

Extent(e)

Gene Layer

26



2p
Tier 1

Tier 2

Tier 3

Tier n

1p np

Depth(d)

Extent(e)

Gene Layer

26



Kinase Lattice Logic
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Protein Memory
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Feature Detection

• Krakauer, D.C. & Page, K & Sealfon, S. Module dynamics of the GnRH signal transduction network. J. theor, Biol. 218, 
457-470  (2002)
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Reproductive Cycles
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Robustness Issues:
Dichotomous approaches for Cells 

and Brains

• Krakauer, D.C. & Plotkin, J. Redundancy, antiredundancy and the robustness of genomes PNAS 99, 1405-1409 (2002)
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From Cells to Brains
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From Cells to Brains
• Individual cells can only respond to stimuli of comparable space and 
time dimensions to their receptors - hence multi-cells required for 
larger features.
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circuits is limited by the sparse and chemical nature of gene regulation
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From Cells to Brains
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protein decay and signal transduction to perform computational work 
but at cellular time scales

• The cell is a noisy environment and makes extensive use of 
redundancy at a very high cost -- in large populations many cells are 
disposable & correct errors via death

• Long lived cells force the emergence of cell-population memory etc.
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